Lagrange geometric interpolation by rational spatial cubic Bézier curves
نویسندگان
چکیده
In the paper, the Lagrange geometric interpolation by spatial rational cubic Bézier curves is studied. It is shown that under some natural conditions the solution of the interpolation problem exists and is unique. Furthermore, it is given in a simple closed form which makes it attractive for practical applications. Asymptotic analysis confirms the expected approximation order, i.e., order six. Numerical examples pave the way for a promising nonlinear geometric subdivision scheme.
منابع مشابه
An Optimal G^2-Hermite Interpolation by Rational Cubic Bézier Curves
In this paper, we study a geometric G^2 Hermite interpolation by planar rational cubic Bézier curves. Two data points, two tangent vectors and two signed curvatures interpolated per each rational segment. We give the necessary and the sufficient intrinsic geometric conditions for two C^2 parametric curves to be connected with G2 continuity. Locally, the free parameters w...
متن کاملHermite Geometric Interpolation by Rational Bézier Spatial Curves
Polynomial geometric interpolation by parametric curves became one of the standard techniques for interpolation of geometric data. An obvious generalization leads to rational geometric interpolation schemes, which are a much less investigated research topic. The aim of this paper is to present a general framework for Hermite geometric interpolation by rational Bézier spatial curves. In particul...
متن کاملCertified approximation of parametric space curves with cubic B-spline curves
Approximating complex curves with simple parametric curves is widely used in CAGD, CG, and CNC. This paper presents an algorithm to compute a certified approximation to a given parametric space curve with cubic B-spline curves. By certified, we mean that the approximation can approximate the given curve to any given precision and preserve the geometric features of the given curve such as the to...
متن کاملGeometric Hermite Interpolation Based on the Representation of Circular Arcs ⋆
A new heuristic method of geometric Hermite interpolation is presented to construct a planar cubic rational Bézier curve with two points and two unit tangent directions. The integral, which shows the change rate of the curvature, is taken as the energy function to measure the fairness of the parameter curve. Hence the curvature of the new curve is more stable. Since that the energy function of ...
متن کاملEndpoint hermit interpolation with cubic ball PH curves
The Pythagorean hodograph (PH) curves are polynomial parametric curves whose hodograph (derivative) components satisfy the Pythagorean condition. Lots of research works had been done with PH curves relevant topics due that PH curves own many remarkable properties, e.g., its offset curves have exact rational representations. In this paper, ball curves with rational polynomial offset are studied....
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Computer Aided Geometric Design
دوره 29 شماره
صفحات -
تاریخ انتشار 2012